148 research outputs found

    Simultaneous Confidence Intervals Based on the Percentile Bootstrap Approach

    Get PDF
    This note concerns the construction of bootstrap simultaneous confidence intervals (SCI) for m parameters. Given B bootstrap samples, we suggest an algorithm with complexity of O(mB log(B)). We apply our algorithm to construct a confidence region for time dependent probabilities of progression in multiple sclerosis and for coefficients in a logistic regression analysis. Alternative normal based simultaneous confidence intervals are presented and compared to the bootstrap intervals

    Designed Extension of Survival Studies: Application to Clinical Trials with Unrecognized Heterogeneity

    Get PDF
    It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial

    A Pseudolikelihood Approach for Simultaneous Analysis of Array Comparative Genomic Hybridizations (aCGH)

    Get PDF
    DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based Comparative Genomic Hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and across hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and across hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure, and with random effects to allow for intertumoral variation, as well as intratumoral clonal variation. For ease of computation, we base estimation on a pseudolikelihood function. The method produces quantitative assessments of the likelihood of genetic alterations at each clone, along with a graphical display for simple visual interpretation. We assess the characteristics of the method through simulation studies and through analysis of a brain tumor aCGH data set. We show that the pseudolikelihood approach is superior to existing methods both in detecting small regions of copy number alteration and in accurately classifying regions of change when intratumoral clonal variation is present

    Assessment of a CGH-based Genetic Instability

    Get PDF

    A Pairwise Naïve Bayes Approach to Bayesian Classification

    Get PDF
    Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a “pairwise naïve” Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers

    DESIGNED EXTENSION OF SURVIVAL STUDIES: APPLICATION TO CLINICAL TRIALS WITH UNRECOGNIZED HETEROGENEITY

    Get PDF
    Abstract: It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of a randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial

    Comparison of Urine Output among Patients Treated with More Intensive Versus Less Intensive RRT: Results from the Acute Renal Failure Trial Network Study

    Get PDF
    Intensive RRT may have adverse effects that account for the absence of benefit observed in randomized trials of more intensive versus less intensive RRT. We wished to determine the association of more intensive RRT with changes in urine output as a marker of worsening residual renal function in critically ill patients with severe AKI

    Imaging correlates of molecular signatures in oligodendrogliomas.

    Get PDF
    Molecular subsets of oligodendroglioma behave in biologically distinct ways. Their locations in the brain, rates of growth, and responses to therapy differ with their genotypes. Retrospectively, we inquired whether allelic loss of chromosomal arms 1p and 19q, an early molecular event and favorable prognostic marker in oligodendrogliomas, were reflected in their appearance on magnetic resonance imaging. Loss of 1p and 19q was associated with an indistinct border on T(1) images and mixed intensity signal on T(1) and T(2). Loss of 1p and 19q was also associated with paramagnetic susceptibility effect and with calcification, a common histopathological finding in oligodendrogliomas. These data encourage prospective evaluation of molecular alterations and magnetic resonance imaging characteristics of glial neoplasms
    corecore